

# 1<sup>st</sup>North African Olympiad in Informatics 2025

# Dox Taurus Cows

Time limit: 1 second Memory limit: 256 MB

Grandpa Porcellesi's old farm can be represented as an  $N \times M$  grid (fenced), where each cell represents one hectare of land. Rows are numbered from 0 to N-1 from top to bottom, and columns from 0 to M-1 from left to right.

Porcellesi planned the fenced areas in the following way: as long as a rectangular area exists, he fences the largest possible square with its top-left corner inside the rectangle. As a result, all minimal fenced areas are squares.

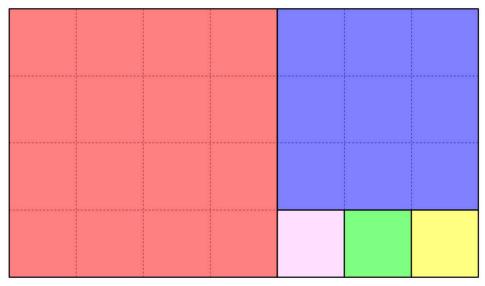



Figure 1: An example of a farm with N=4 and M=7.

Besides its peculiar topology, Grandpa Porcellesi's farm is inhabited by intelligent cows: the **Dox Taurus**. These cows, also known as **quantum cows**, have the ability to disappear and reappear at will. (By doing so, the cows can move between different fenced areas.)

Grandpa Porcellesi decides to monitor the cows' movements: in particular, he will record every time a cow appears or disappears from a cell in the farm.

For logistical reasons, he is interested in knowing the maximum number of cows present in a fenced area at any given time.

#### **Problem Description**

Formally, you are given Q queries of one of the following three types:

- add (r, c): Adds a cow to cell (r, c)
- remove (r, c): Removes a cow from cell (r, c)
- count: Returns the maximum number of cows in any fenced area at that moment Help Grandpa Porcellesi answer the **Dox Taurus cows' queries!**

## Input

The input consists of Q + 1 lines:

- Line 1: Integers N, M, Q
- Lines (1+i)  $(1 \le i \le Q)$ : Description of an operation:
  - a r c: Add a cow at (r, c)
  - t r c: Remove a cow from (r, c)
  - c: Request the maximum number of cows in a fenced square

# Output

The output consists of C lines, where C is the number of queries of type count:

• Line i: The value returned by the i<sup>th</sup> query of type count

#### Constraints

- $1 \le N, M \le 10^{18}$
- 0 < Q < 200,000
- $0 \le r < N$ ,  $0 \le c < M$  for each operation
- Farm is initially empty
- Every removal operation is valid (cell has at least one cow)

#### **Subtasks**

| Subtask | Points | Constraints                        |
|---------|--------|------------------------------------|
| 1       | 0      | Example cases only                 |
| 2       | 11     | $N \le 50, M \le 50, Q \le 500$    |
| 3       | 21     | $N \le 50, M \le 50, Q \le 20,000$ |
| 4       | 20     | N is a multiple of $M$             |
| 5       | 27     | $Q \le 500$                        |
| 6       | 21     | No additional constraints          |

#### **Examples**

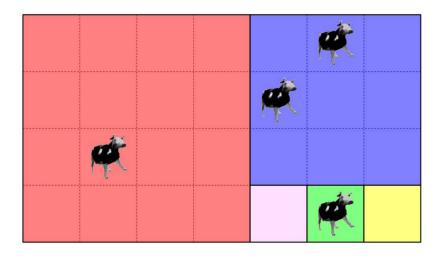
#### Example 1

| 4 7 8 |  |  |
|-------|--|--|
| a 2 1 |  |  |
| a 1 4 |  |  |
| a 0 5 |  |  |
| a 3 5 |  |  |
| С     |  |  |
| t 0 5 |  |  |
| a 3 5 |  |  |
| С     |  |  |
|       |  |  |

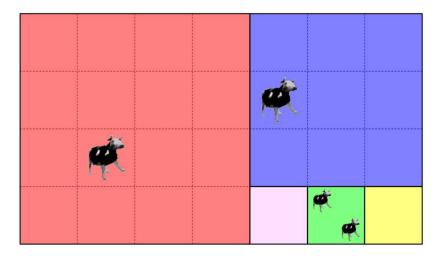
#### Output:

2 2

# Example 2


```
13 9 17
a 10 5
a 11 8
c
a 9 6
c
t 10 5
c
a 11 8
a 11 8
c
t 11 8
c
t 11 8
c
a 9 0
a 9 4
a 10 1
c
```

### Output:


# Explanation

In the first test case:

- The farm starts **empty**
- After the first 4 queries, the farm looks like this :
  - The **top-right** fenced area contains 2 **cows**.
  - the first count query returns 2.



• After processing the next queries, the fenced area with the most cows now has 2 cows.



The second  $\operatorname{\mathsf{count}}$  query also returns 2.